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Abstract—The reaction of tri-O-acetyl-p-glucal with different nitrogen nucleophiles was effectively promoted by a catalytic amount
of tris(pentafluorophenyl)borane for the first time in acetonitrile at room temperature to produce a variety of azapseudoglycals via
Ferrier rearrangement in good yields and preferential anomeric selectivity.

© 2004 Published by Elsevier Ltd.

Azaglycosylation is an important reaction in the synthe-
sis of N-glycosides, due to the increasing importance of
nucleosides having N-glycosidic linkages as pharmaco-
logical agents such as antibiotics, antineoplastic and
antiviral compounds.! Among the N-glycosides, glycals
having the double bond between C(2) and C(3) (N-pseudo-
glycals), represent a very important class of com-
pounds because the double bond may be easily
modified. Pseudoglycals are traditionally obtained by
an acid catalyzed allylic rearrangement of glycals in
the presence of nucleophiles, a reaction known as the
Ferrier rearrangement.> Most of the Ferrier glycosyla-
tion reactions are known to occur with various nucleo-
philes such as carbon nucleophiles,®> oxygen and/or
sulfur nucleophiles* (alcohols and thiols) in the presence
of acid catalysts. There are very limited reports of Fer-
rier rearrangement in the literature with nitrogen nucle-
ophiles for the production of N-pseudoglycals where
generally an azide nucleophile is used to obtain the glyc-
osyl azides® and rarely others.® We were interested in a
new protocol for direct conversion of glucals to N-pseu-
doglycals with sulfonamides and carbamates as nitrogen
nucleophiles. Sulfonamides and carbamates are useful
protecting groups for amines and can easily undergo
further conversions using well-established protective
group chemistry.” Furthermore, they play an important
role in chemotherapy, and have been investigated for
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their anticancer properties.® Recently, Colinas and
Bravo reported a method for sulfonamido-glycosylation
of glycals,” however the products are 2-deoxy glycosides
and not the Ferrier products (pseudoglycals). To our
knowledge there is only one example known in the liter-
ature with methane sulfonamide® but, there are no
reports with benzyl or ¢-butyl carbamates affording the
corresponding N-pseudoglycals.

In continuation of our interest in exploring the potential
use of tris(pentafluorophenyl)borane [B(Cg¢Fs);] as a
Lewis acid catalyst,'® herein we report a new and effi-
cient protocol for the azaglycosylation of tri-O-acetyl-
D-glucal with sulfonamides and carbamates to the
corresponding N-pseudoglycals (Scheme 1). B(CgFs)3
is gaining prominence as an unconventional and viable
alternative for boron-based Lewis acids,!! since it is
commercially available, considerably more hydrolytically
stable and comparable in Lewis acidity to BF;, but
without the problems associated with reactive B-F
bonds. Furthermore, B(C¢Fs); has not previously been
used for Ferrier glycosylation with any kind of nucleo-
philes.

In a test reaction 1mmol of tri-O-acetyl-p-glucal 1 was
treated with 1mmol of benzenesulfonamide 1la and

AcO 0 B(CFs); (0.5 mol%)  pcr N O NHR
| + RNH, ————>
ACO\\" CH;CN, 1. t. ACO\\" =

1 OAc g ArSO,- or Cbz or Boc

Scheme 1.
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0.5mol% of B(C¢xFs); in acetonitrile for 4h at room tem-
perature to furnish benzenesulfonamido 2,3-unsaturated
glycoside 1b in 91% yield (Table 1, entry 1) with the o-
anomer as the major product. This success encouraged
us to exploit the generality of the reaction with different
sulfonamides and the results are summarized in Table 1.
p-Toluenesulfonamide 2a (TsNH,) and methanesulfona-
mide 3a (MsNH,) were reacted with glucal 1 under the
present reaction conditions to give the corresponding
pseudoglycals 2b and 3b in 92% and 90% yields, respec-
tively, with the a-anomer as the major product. 4-Nitro-
benzenesulfonamide (NsNH,) 4a reacted smoothly with
glucal 1, to give the corresponding pseudoglycal 4b in
88% yield. Interestingly, extension of this reaction to
N-substituted sulfonamides such as N-phenyl and N-
benzyl toluenesulfonamides (5a and 6a) furnished the
corresponding pseudoglycals Sb and 6b, respectively, in
good yields. We also extended the reaction conditions
to benzyl carbamate (CbzNH,) and z-butyl carbamate
(BocNH;) nucleophiles and found that these carbamates
also reacted with glucal 1 to give the corresponding

Table 1. B(C4Fs)s-catalyzed Ferrier azaglycosylation of tri-O-acetyl-D-glucal

pseudoglycals 7b and 8b albeit in moderate yields
(entries 7 and 8). Attempts made to improve the yields,
such as increasing the amount of catalyst and/or reac-
tion temperatures were unsuccessful. The products bear-
ing benzyloxycarbonyl (Cbz) and ¢-butyloxycarbonyl
(Boc) groups are potential precursors for the synthesis
of glycosyl amines. In addition, we observed that the
glycosylation of 1 with TMSN; was also successful
furnishing the corresponding glycosyl azide in 94% yield
(entry 9). However, the reaction of 1-trimethylsilyl imid-
azole with tri-O-acetyl-p-glucal 1 was unsuccessful
(entry 10).

A comparative study was carried out using tri-O-acetyl-
D-glucal and TsNH, as a model system with different
Lewis acids (Table 2). For example, treatment of glucal
1 with TsNH, in the presence of 1 mol% of BF3-Et,0,
the led to a complex mixture, while with AICIl; there
was no reaction. However, InCl; gave the product in a
moderate yield and Sc(OTf); was found to be as effective
as B(CgFs)3 for this conversion but with lower selectiv-

Entry Nucleophile Time (h) Pseudoglycal Yield (%)* Ratio (o/ B)b
Ac O/\i)jNHSOZPh
1 PhSO,NH 4 . 91 5/1
n AON b
O._.NHTs
2 TsNH, 3 AcO/\U/‘ 92 71
29 PN 2b
O._,NHMs
3 MsNH, 3 ACOU 90 6/1
3a AcO™ F 3b
O._ _NHNs
4 NsNH, 5 ACOU 88 o
4a AcO™ Z 4b
Ts
Ts<
5 o 5 Ac0” N O 84 71
5a AcO™ 7 b
Ts
Ts<
6 oy NH 6 A0 NON N 82 8/1
n
6a AcO™ 6b
O._,NHCbz
7 CbzNH, 10 ACO/\Lj 7 1211
7a AcON NF L)
O.__NHBoc
8 BocNH, 16 ACOU 56 15/1
8a AcO™ F 8h
0. Ny
9 TMSN, 2 Acow 9% s/t
9a AcOY Z %
[1§ 0 N// N
10 N 24 ACO < 0 —
T™MS s 10b
10a AcO

?Tsolated yields as anomeric mixtures after purification.

® The anomeric ratio was determined on the basis of the integration of the anomeric hydrogen in the '"H NMR spectra.
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Table 2. Comparative azaglycosylation study of tris-O-acetyl-D-glucal
1 with TsNH, using different Lewis acids

Entry Lewis acid Time Yield Ratio
(0.5.mol %) (h) (%) (o/B)

1 B(C4Fs); 3 92 71

2 BF;-Et,0 1 Complex mixture —

3 AlCl, 8 No reaction —

4 InCly 4 70 71

5 Sc(OTf)3 3 88 6/1

ity. Among these catalysts, B(C¢Fs); was found to be
mild and more effective than others in terms of yields,
reaction profiles and selectivity.

In summary, we have demonstrated a novel and efficient
Ferrier azaglycosylation of tri-O-acetyl-p-glucal with
sulfonamides, carbamates and azides using B(C¢Fs); as
catalyst. We believe this protocol will provide a useful
entry to N-pseudoglycals under mild and simple condi-
tions, with high yields.

General experimental procedure: To a stirred solution of
tri-O-acetyl-D-glucal (0.272 g,  mmol) and the N-nucleo-
phile (Immol) in acetonitrile (S5mL) was added
tris(pentafluorophenyl)borane (0.5mol%) and the stir-
ring continued for the given time (Table 1) at room tem-
perature. After completion of the reaction (monitored by
TLC), the solvent was evaporated in vacuo and the resi-
due was purified by column chromatography on silica gel
to give the corresponding azapseudoglycal in good
yields. The products obtained were identified by IR, 'H
and '>C NMR and mass spectroscopy.'?
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Spectroscopic data for selected products (major anomers):
(1b): '"H NMR (CDCl;, 400 MHz): 6 7.98-7.94 (m, 2H),
7.63-7.49 (m, 3H), 5.96 and 5.85 (ABq, Jag=10.4Hz, 2H),
5.66 (br s, 2H), 5.28 (d, J=8.8Hz, 1H), 3.92 (dd, J=3.6,
8.4Hz, 1H), 3.53 (dt, J=2.8,9.2Hz, 1H), 3.34 (dd, J=2.4,
12.4Hz, 1H), 2.05 (s, 3H), 2.03 (s, 3H); '*C NMR (CDCls,
100 MHz): § 170.7, 170.1, 141.5, 132.9, 130.6, 129.0 (2C),
127.1 (20), 126.6, 77.1, 66.7, 64.2, 61.7, 20.9, 20.8; IR
(neat): 3256, 1740, 1233, 1160, 1029, 684cm~'; HRMS
(ESI) caled for C;¢H9NO-S, 369.0882; found, 369.0878.
(4b): '"H NMR (CDCls, 400MHz): 6 8.38 (d, J=8.8Hz,
2H), 8.15 (d, /J=8.8Hz, 2H), 6.3 (d, J=8.8Hz, 1H), 5.98
and 5.85 (ABq, Jag=10.4Hz, 2H), 5.66 (d, J=8.8Hz,
1H), 525 (d, J=8.8Hz, 1H), 3.88 and 3.85 (ABq,
Jap=12.0Hz, 1H), 3.63-3.62 (m, 2H), 2.05 (s, 3H), 2.0
(s, 3H); '*C NMR (CDCl;, 100MHz): & 170.5, 170.1,
150.1, 147.1, 131.0, 128.6 (2C), 126.2, 124.3 (2C), 77.1,
67.2, 644, 61.7, 20.9, 20.7; IR (neat): 3256, 1744, 1532,
1233, 1164, 1037, 624cm™!; HRMS (ESI) caled for
C16H15N>00S, 414.0733; found, 414.0728. (6b): '"H NMR
(CDCl3, 300 MHz): 6 7.77 (d, J=8.3Hz 2H), 7.35-7.18 (m,
7H), 6.1 (s, 1H), 5.63 and 5.45 (ABq, Jag=10.5Hz, 2H),
5.16 (d, J=7.5Hz 1H), 4.35-4.08 (m, 2H), 4.06-3.9 (m,
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2H), 3.82 (t, J=3.6, 8.4Hz, 1H), 2.42 (s, 3H), 2.1 (s, 3H),
2.06 (s, 3H); *C NMR (CDCls, 75MHz): 6 170.5, 170.1,
143.6, 137.2, 136.5, 129.8, 129.3, 129.1 (2C), 128.3 (20),
128.2 (2C), 128.0 (2C), 127.3, 83.2, 74.0, 64.4, 63.0, 47.1,
21.5, 20.9, 20.7; IR (neat): 1740, 1349, 1225, 1161, 1043,
772cm~'; HRMS (ESI) caled for C,4H,,NO-S, 473.1508;
found, 473.1502. (7b): 'H NMR (CDCl;, 400 MHz): &
7.35-7.32 (m, 5H), 5.95 and 5.87 (ABq, Jag=10.4Hz, 2H),
5.73 (br s, 1H), 5.56 (br s, 1H), 5.29 (d, J=8.8Hz, 1H),
5.15 (s, 2H), 4.25 and 4.14 (ABq, Jag=12.4Hz, 2H, the
4.25ppm peaks are further split into doublets with
J=4.8Hz and the 4.14ppm peaks are further split into
doublets with J=2Hz), 3.92-3.89 (m, 1H), 2.07 (s, 3H),

2.05 (s, 3H); 13C NMR(CDCl;, 100MHz): & 170.9, 170.2,
155.1, 135.9, 129.8, 129.6, 128.6 (2C), 128.4 (2C), 127.5,
74.5, 67.2, 64.7, 64.5, 62.9, 21.0, 20.8; IR (neat): 3350,
1740, 1519, 1233, 1049, 698cm~'; HRMS (ESI) calcd for
C15H,1NO, 363.1318; found, 363.1321. (8b): 'H NMR
(CDCls, 400MHz): 6 5.93 and 5.83 (ABq, Jag=10.4Hz,
2H), 5.68 (br s, 1H), 5.39 (br s, 1H), 5.28 (d, J=8.8Hz,
1H) 4.25-4.15 (m, 2H), 3.93-3.91 (m, 1H), 2.09 (s, 3H),
2.08 (s, 3H), 1.47 (s, 9H); '3C NMR (CDCl;, 100 MHz): 6
170.8, 170.1, 154.3, 129.4, 127.9, 80.4, 73.7, 67.5, 64.8,
63.0, 28.2 (3C), 20.9, 20.7; IR (neat): 3354, 1740, 1511,
1233, 1045, 976cm™~'; HRMS (ESI) caled for C 1sHp;NO;,
329.1475; found, 329.1469.
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